
 Writing User Defined Constitutive Model
 Updated 02/2024

1

Writing User Defined Constitutive Model
Created By: Roozbeh Geraili Mikola, PhD, PE

Email: adonis4geo@outlook.com

Web Page: www.geowizard.org

Introduction
Since components in ADONIS are modular and self-contained, they can be designed and

developed separately. Thus, users can define their own constitutive model and integrate the

model into the ADONIS program by using a dynamic-linking library (dll) with relatively little

dependence on other modules. Different material classes may be defined to describe different

material properties or behavior. These classes are derived from an abstract class

ConstitutiveModel, which defines their common behavior. Various constitutive models are

represented as virtual functions in classes, derived from the ConstitutiveModel base class. The

main function of the constitutive model is to return new stresses, given strain increments. Any

derived constitutive model class must provide actual functions to replace the virtual member

functions in the ConstitutiveModel base class. The generated dll file needs to be placed in the

installation folder of the program. The program will then detect and load the dll automatically. All

the files referenced in this section are contained in the “\ADONIS\PluginFiles” directory.

Export Functions
The following functions must be provided in the dll.

// entry point into a dynamic-link library (DLL)

int __stdcall DllMain(void *,unsigned, void *) {

 return 1;

}

// export class instance

extern "C" __declspec(dllexport) ConstitutiveModel *createInstance() {

 UserConmodelElastic *m = new UserConmodelElastic();

 return m;

}

 Writing User Defined Constitutive Model
 Updated 02/2024

2

Member Functions
Any derived constitutive-model class must provide actual functions to replace the virtual member

functions in ConstitutiveModel. These functions perform the operations described below.

const char* getConModelName() const

This function returns a string containing the name of the constitutive model as the user will refer

to it with the MODEL command. For example, "udelastic" would be a valid string in C++. This

must be a unique name, and is used for synchronizing Save/Restore. This name is also used in

the file name of the DLL described below.

int getPropertyNum() const

This function returns the number of model properties.

const char* getPropertyNames() const

This function returns a string containing the names of model properties. The following string is a

valid example: {‘‘shear, bulk’’}. Property names are delimited by commas (‘,’).

const char* getPropertyTypes() const

This function returns a string containing the typrs of model properties. Property type could be

either “value” or “table”. The following string is a valid example: {‘‘value, value”}. Property types

are delimited by commas (‘,’).

double getProperty(int index) const

A value should be returned for the model property of sequence number index (previously defined

by a getProperty() call, with index = 0 denoting the first property).

double getDefaultProperty(int index) const

A value should be returned for the default model property of sequence number n. This value will

be assigned to each parameter whenever property default button in the property dialog (GUI) is

pressed.

const char* getPropertyUnits(int index) const

This function returns a string containing the units of model properties. The following string is a

valid example: {"M/LT2,M/LT2"}. Property names are delimited by commas (‘,’). 6 different unit

types should be provided:

1) user-defined (Dimension Symbol)

2) SI: m-pa-N/m3

3) SI: m-kpa-kN/m3

4) SI: m-Mpa-MN/m3

5) Imperial: ft-psf-lbf/ft3

6) Imperial: in-psi-lb/in3

 Writing User Defined Constitutive Model
 Updated 02/2024

3

void setProperty(int index, double val)

The supplied value of index is the sequence number (starting with 0) of the property name

previously specified by means of a getProperties() call. The model object is required to store the

supplied value in an appropriate private member variable.

ConstitutiveModel *clone()

A new object, of the same class as the current object, must be created, and a pointer to it of type

ConstitutiveModel returned. This function is called whenever program trys to assign the same

model to another element.

Double getConfinedModulus() const

The model object must return a value for its best estimate of the maximum confined modulus.

This is used by program to compute the stable timestep. For a linear elastic model, the confined

modulus is K + 4G/3.

double getShearModulus() const

The model object must return a value for its best estimate of the current tangent shear-modulus.

double getBulkModulus() const

This function should return its best estimate of the current tangent bulk-modulus.

void initialize(StressState *st)

This function is called once for each model object (i.e., for each gauss point) when the ADONIS

cvlces, and at the beginning of the run() method if setIfNeedInitialize() returns true. The model

object may perform initialization of its property or state variables, or it may do nothing.

void update(StressState *st)

This function is called for each gauss point in the finite element at each cycle. The model must

update the stress tensor from strain increments. The structure st (which is a pointer to

StressState class) contains the current stress components and the computed strain increment

components.

int getSaveNum() const

This function return the number of parameters that needs to be saved. The parameters will be

provided by setSaveValue function.

void setSaveValue(int index, double val)

The supplied value of index is the sequence number (starting with 0) of the property that need to

be saved. These parameters are the one the will be saved when program tries to store the model

in the file. These parameters could be any parameters in the class other than the one specified

in the list of properties using setProperty.

double getSaveValue(int index)

 Writing User Defined Constitutive Model
 Updated 02/2024

4

A value should be returned for the model stored property of sequence number index (previously

defined by a setSaveValue() call, with index = 0 denoting the first property).

Optional Functions
The following function are optional to modify. If no modifications has made the default parameters

will be used.

const char* getPropertyDescription(int index) const

This function returns a string containing the description of each property.

bool canFail() const

This function returns false if solve(“elastic”) command is being executed.

void setCanFail(bool b)

This function indicates whether model will be able to perform plastic correction.

bool needInitialize() const

This function returns true if initialization is needed.

void setIfNeedInitialize(bool b)

This function indicates whether initialization needs to be called again.

bool supportsPropertyScaling() const

This Function returns true if property scaling is supported for factor-of-safety calculations

void scaleProperties(const double &,const std::vector<int> &)

This function will be used when “solve fos” is being called to scale the properties for factor of

safety calculation. Please note that, this function is still under development and changing it will

not have any effect.

bool isPropertyReadOnly(int index) const

Return True if property of index should be considered read only, and not allowed to be set by the

user.

State Indicators of Zones
Each gauss point in the element has a member variable that maintains its current state indicator.

The member variable has integer value that can be used to represent a maximum of 11 distinct

states (starting from 0). The state indicators are used by built-in constitutive models to denote

plastic failure of a zone. See list below for integer assignment and the corresponding failure state

for built-in constitutive models.

 // 0:Elastic
 // 1:ShearNow
 // 2:ShearPast

 Writing User Defined Constitutive Model
 Updated 02/2024

5

 // 3:TensionNow
 // 4:TensionPast
 // 5:VolumeNow
 // 6:VolumePast
 // 7:JointShearNow
 // 8:JointShearPast
 // 9:JointTensionNow
 // 10:JointTensionPast

Pre-requisite
All the header files included in the UDCM folder must be included in the dll to compile.

(conmodel_global.h, constitutivemodel.h, ctable.h and stressstate.h). The dll also needs to be

linked with the libconmodel.lib (for 32-bit version). Note: The static library files were compiled with

the release configuration. If you compile with the debug configuration, you may not get the correct

values for debugging.

Creating User-Defined Model DLLs
ADONIS is built using Qt Creator, a cross platform development environment, which is part of

the SDK for the Qt GUI application development. Constitutive model plug-in DLLs need to link

against the Qt runtime library to be compatible at runtime. Qt is a free and open-source widget

toolkit for creating graphical user interface (GUI) as well as cross-platform applications that run

on various software and hardware platforms. Qt is currently being developed by The Qt Company,

a publicly listed company, and the Qt Project under open-source governance, involving individual

developers and organizations working to advance Qt. Qt is available under both commercial

licenses and open source GPL 2.0, GPL 3.0, and LGPL 3.0 licenses. If you haven’t installed the

Qt already, please go ahead and follow the steps mentioned in the Appendix A and install it then

follow the following steps to create user-defined model DLL:

1) Unzip all files in the udcm_example_mingw32.zip (located at PluginFiles folder) to a

desired location. The zip file includes all the necessary files. All the header files and static

library links have been created for this example file. In case you want to change the name

of the model or header file please follow the sequences below.

2) Open Qt Creator. Go to File->Open File or Project...

 Writing User Defined Constitutive Model
 Updated 02/2024

6

Figure 1- Open File or Project from menu

3) Then navigate to the project you wish to open and click on the .pro file

(i.e., udcm_example.pro).

Figure 2- Select project from

4) Select “MinGW 32-bit” compiler and press “Configure Project”

 Writing User Defined Constitutive Model
 Updated 02/2024

7

Figure 3- Configure project. Make sure to select MinGW 32-bit compiler.

5) To rename the files (i.e. .h or .cpp), right-click on each file and select “Rename…” and

type in your desired name.

Figure 4- Rename existing files.

6) To rename the output dll file name double click on project file (i.e. .pro) and modify the

target name (i.e. TARGET = ucdm_example).

Figure 5- Modify project file.

 Writing User Defined Constitutive Model
 Updated 02/2024

8

7) In case you want to rename the class name, make sure you rename the “UDCM_Example”

to “UDCM_Mohr” in both header and source file (i.e. udcm_mohr.h and udcm_mohr.cpp).

Figure 6- Modify class name based on new selected name.

8) To change the project’s name, close the Qt Creator and rename the project file (i.e.

udcm_example.pro). Remove the “udcm_example.pro.user” file if exists then reopen the

renamed project and configure again after opening the project (like step 4).

Compilation
After modifying the library functions make sure that you select the “Release” mode as build type.

Now go to Build->Build Project and build the project. Assuming that you have included the linker,

you should now be able to compile the program. The result will be a file with extension .dll. As

mentioned above, the program may not work properly if you compile in debug mode.

Figure 7- Select release mode and build the project.

Running
Copy the generated dll file from the location provided at “Build Setting” page (shown in the Figure

8) then put your dll file in the plugins folder which is in the installation folder (i.e.

 Writing User Defined Constitutive Model
 Updated 02/2024

9

\ADONIS\exe32\plugins). ADONIS will automatically recognize the user defined constitutive

model in the restart. You should see all of the materials that you included in the material list.

Figure 8- Find the location of the generated dll file from Projects page.

 Writing User Defined Constitutive Model
 Updated 02/2024

10

APPENDIX A

Download Qt and Qt Creator
To get started with the non-commercial version for free, go to http://qt-project.org/downloads to

see something like what the following screenshot then select “Go open source”:

Figure A1- Go to Qt Project web page.

At the bottom of the page click on “Download the Qt Online Installer”

Figure A2- Click on “Download the Qt online Installer”

 Writing User Defined Constitutive Model
 Updated 02/2024

11

Next click on “Download”. Your download should start automatically.

Figure A3- Download the online installer file.

Install/Setup Qt Creator
In general, the default settings have been used when installing Qt Creator. Please note that a Qt

account is required when installing Qt Creator as shown in Figure A4. Choose an existing account

or create a new account. There is no cost associated with a Qt account.

Figure A4- Qt account is required for installation.

 Writing User Defined Constitutive Model
 Updated 02/2024

12

The default components to install were selected as shown in Figure A5. Please make sure the

MinGW 32-bit and MinGW 64-bit are selected. If you plan to choose other components select

these at this step. Please note that some components may only be available when using a

commercial version of Qt.

Figure A5- Select the installation components. Make sure MinGW-32bit compiler is selected.

When Qt Creator has been installed select to launch it and click the “Finish” button and then start

building your constitutive model.

