For Geo-Engineers

Applying Gradient Boundary Conditions

Created By: Roozbeh Geraili Mikola, PhD, PE

Email: adonis4geo@outlook.com
Web Page: www.geowizard.org

In order to create a gradient for the applied variable (such as a pressure, force, and velocity gradient applied to a boundary), one optional keyword phrase may be utilized with specific keywords. Here, the phrase is
"xvar",vx,"yvar",vy

The gradient's x - and y-variations for the force, stress, and/or velocity components are specified by the parameters $\mathbf{v x}$ and $\mathbf{v y}$. The value varies linearly with distance from the global coordinate origin at ($x=0, y=0$):

$$
V_{\text {mod }}=V_{o}+v x \times x+v y \times y
$$

where \boldsymbol{V}_{0} is the initial value at origin and $\boldsymbol{V}_{\text {mod }}$ is the modified value at (x,y). The operation of this feature is best explained by three examples:

Example 1: Apply Variable Velocity to a Vertical Boundary

Figure 1-Apply variable velocity to a vertical boundary.
It is clear that only vy will be in effect for the vertical boundary and that the $\mathbf{v x}$ value is zero. The y-variation's equation is as follows:

$$
V_{\text {mod }}=V_{0}+v y \times y
$$

The velocity at points $(5,-10)$ and $(5,15)$ are 5×10^{-5} and 1×10^{-5} respectively. The gradient equation will be written as follow:

$$
\begin{aligned}
& 5 \times 10^{-5}=V_{0}+v y \times(-10) \\
& 1 \times 10^{-5}=V_{0}+v y \times(15)
\end{aligned}
$$

The values of V0 and vy may be obtained by solving the set of equations above, which yields 3.4×10^{-5} and -1.6×10^{-6}, respectively. Variable velocity will be applied to a vertical border between points $(5,-10)$ and $(5,15)$ using the following command:

```
applybc("xvel",3.4e-5,"yvar",-1.6e-6,"xlim",4.9,5.1,"ylim",-10.1,15.1)
```


Example 2: Apply Variable Force to a Horizontal Boundary

Figure 2- Apply variable force to a horizontal boundary.
Similarly in Example 1, only vx will be in effect and the vy value is zero for the horizontal boundary. The x-variation's equation is as follows:

$$
V_{\text {mod }}=V_{0}+v x \times x
$$

The force at points $(5,10)$ and $(25,10)$ have velocities of 1×10^{6} and 8×10^{6}, respectively. This is how the gradient equation will be expressed:

```
\(1 \times 10^{6}=V_{0}+v x \times(5)\)
\(8 \times 10^{8}=V_{0}+v x \times(25)\)
```

V0 and $v x$ can be found to be 7.5×10^{5} and -3.5×10^{5}, respectively, by simply solving the system of equations above. A horizontal boundary from point $(5,-10)$ to $(25,-10)$ will have variable velocity applied to it by the following command:

```
applybc("syy",7.5e5,"xvar",-3.5e5,"xlim",4.9,25.1,"ylim",9.9,10.1)
```


Example 3: Apply Variable Stress to an Inclined Boundary

Figure 3- Apply variable stress to an inclined boundary.
The values of $\mathbf{v x}$ and $\mathbf{v y}$ together can be utilized to construct a gradient for the applied variable in the case of an inclined boundary. The equations can be made simpler by setting vy $=\mathbf{0}$ and
estimating the $\mathbf{V} \mathbf{0}$ and $\mathbf{v x}$ in a manner similar to Example 2, or by specifying $\mathbf{v x}=\mathbf{0}$ and computing the V0 and vy similarly to Example 1. As seen in Figure 3, let's apply varying stress at the inclined boundary along the line between points $(2,4)$ and $(10,7)$. This is the gradient equation that is expressed if we set $\mathbf{v x}=\mathbf{0}$:
$-7 \times 10^{6}=V_{0}+v y \times(4)$
$-1 \times 10^{6}=V_{0}+v y \times(7)$
By solving the previously mentioned set of equations, it is possible to determine $\mathbf{V 0} \mathbf{0}$ and $\mathbf{v y}$ to be -1.5×10^{7} and -2.0×10^{6}, respectively. The command below will apply variable velocity to an angled boundary between points $(2,4)$ and $(10,7)$:

```
applybc("nstress",-1.5e7,"yvar",2.0e6,"xlim",1.9,10.1,"ylim",3.9,7.1)
```

But if we set $\mathbf{v y}=\mathbf{0}$ this is how the gradient equation will be expressed:

```
-7x106 = V 
-1x106 = V V + vx * (10)
```

V0 and $v x$ can be found to be -8.5×10^{6} and 7.5×10^{5}, respectively. The command using the second method will looks like this:

```
applybc("nstress",-8.5e6,"xvar",7.5e5,"xlim",1.9,9.9,"ylim",3.9,7.1)
```

Similar applied variable stress will be imposed to the inclined border by both approaches.

