
 Using Python with HYRCAN
 Updated 06/2022

1

Using Python with HYRCAN
Created By: Roozbeh Geraili Mikola, PhD, PE

Email: hyrcan4geo@outlook.com

Web Page: www.geowizard.org

This tutorial will demonstrate how to use Python in HYRCAN. Python is a general-purpose
programming language with good support for scientific and numerical programming. The Python
programming language is embedded inside HYRCAN and extended to allow models to be
manipulated from Python programs. Currently Python environment contains the following
extension modules:

 numpy 1.22.4 Array operations

 scipy 1.8.1 Collection of scientific libraries

 XlsxWriter 3.0.3 Writing files in the Excel 2007+ XLSX file format

Writing Python Code
There are two ways to write Python code in HYRCAN. In the Python console or load the script
text. In the console you write Python commands one by one, executing them by pressing Enter,
while script can contain more complex code made up of several lines, executed only when loaded.
In this tutorial we use the latter. You can simply create a new file using any text editor (Notepad++
for instance) and type all the python commands in there and save the file with py extension (i.e.
script_tut09.py). Now you will be able to load the script (Figure 1) into HYRCAN which gets
executed by embedded Python interpreter. Please note that HYRCAN only recognizes the script
files with extension *.py and *.hjs which corresponds to Python and JavaScript script files.

Select: File
Load Script

0.0,30.0

0.0,0.0

50.0,30.0
56.0,34.0

80.0,50.0 130.0,50.0

130.0,42.0

130.0,35.0

130.0,0.0

Sand

Clay

Sand

0.0,20.0

 Using Python with HYRCAN
 Updated 06/2022

2

Figure 1- Load script dialog.

Working with Modules

First, we import the hyrcan module with the import statement. The hyrcan module defines the
interaction between Python and HYRCAN. You also will be able to import the hyrcan module as
the shortened name like hy.

The above script creates a simple slope geometry using Python scripting. The hy.command
(hyrcan.command) function is used to issue a series of HYRCAN commands. The triple quotes
are used to define a multi-line string. Figure 1 shows the schematic view of the slope geometry
generated by Python script.

import hyrcan as hy
hy.command("""
newmodel()
set('failureDir','r2l')
extboundary(0,0,130,0,130,50,80,50,50,30,0,30,0,0)
matboundary(0,20,130,35)
matboundary(56,34,130,42)
definemat('ground','matID',1,'matName','Sand','uw',18,'cohesion',5,'friction',38)
definemat('ground','matID',2,'matName','Clay','uw',17,'cohesion',57,'friction',0)
assignsoilmat('matid',2,'atpoint',85,30)
definelimits('limit',20,65,'limit2',80,100)
set('Method','BishopSim','on')
""")

 Using Python with HYRCAN
 Updated 06/2022

3

Figure 2- External boundary is created.

Now let’s say we want to modify the property for the clay layer and perform the sensitivity analysis
to estimate the factor of safety for multiple cohesion parameters. The following lines show how to
modify the properties for the clay layer and perform the computation after each modification. For
statement is used to repeat the process. Please note that ‘silence’ argument is used with compute
command to prevent program from showing the information dialog at the end of each computation
cycle. Otherwise, program would stop the process after first cycle and steps out of the for-loop.

hy.min_fos command is used to extract the minimum factor of safety for specified analysis method
(i.e. Simplified Bishop). The method name could be a full name like: "Bishop Simplified", "Janbu
Simplified", "Spencer", "GLE/Morgenstern-Price" or command name (short) like: "BishopSim",
"JanbuSim", "Spencer", "GLE/M-P”. List of all the functions in the hyrcan module is listed in the
manual (Help -> Scripting Language -> Python)

Now you will be able to export the result into excel file using XlsxWriter module. XlsxWriter is a
Python module that can be used to write text, numbers, formulas and hyperlinks to multiple
worksheets in an Excel 2007+ XLSX file. XlsxWriter module is already install in the program’s
Python environment. More information about the XlsxWriter module can be found at
https://xlsxwriter.readthedocs.io/. The following commands shows how to export the output from
the program into the excel file. Figure 3 illustrates the output excel file created by XlsxWriter
module.

fos_array = [-1,-1,-1,-1]
coh_array = [60,70,80,90]
cmd =
"definemat('ground','matID',2,'matName','Clay','uw',17,'cohesion',{coh},'friction'
,0)"
for i in range(0, 4):
 hy.command(cmd.format(coh=coh_array[i]))
 hy.command("compute('silence')")
 fos_array[i] = hy.min_fos('BishopSim')

 Using Python with HYRCAN
 Updated 06/2022

4

Figure 3- Exported excel file that summarizes cohesion versus fos values.

import xlsxwriter

Create a new XlsxWriter Workbook object
workbook = xlsxwriter.Workbook('coh_vs_fos_plot.xlsx')
Add a new worksheet to a workbook
worksheet = workbook.add_worksheet()
Create a new Format object to formats cells in worksheets
bold = workbook.add_format({'bold': 1})
Add the worksheet data that the charts will refer to.
headings = ['Cohesion (kN/m2)', 'FOS']
Write a row of data
worksheet.write_row('A1', headings, bold)
Write a column of data
worksheet.write_column('A2', coh_array)
worksheet.write_column('B2', fos_array)
Create a scatter chart sub-type with straight lines and markers.
chart = workbook.add_chart({'type': 'scatter',
 'subtype': 'straight_with_markers'})
Configure the first series.
chart.add_series({
 'name': '=Sheet1!B1',
 'categories': '=Sheet1!A2:A7',
 'values': '=Sheet1!B2:B7',
})
Add a chart title and some axis labels.
chart.set_title({'name': 'Results of analysis'})
chart.set_x_axis({'name': 'Cohesion (kN/m2)', 'min': 50, 'max': 100})
chart.set_y_axis({'name': 'Factor of Safety'})
Set an Excel chart style.
chart.set_style(11)
Insert the chart into the worksheet (with an offset).
worksheet.insert_chart('D2', chart, {'x_offset': 25, 'y_offset': 10,
'x_scale': 1.5, 'y_scale': 1.5})
Close the Workbook object and write the XLSX file
workbook.close()

 Using Python with HYRCAN
 Updated 06/2022

5

Script
The Python source codes for this example are listed below (script_tut09.py).

Name: script_tut09.py
Import hyrcan and xlsxwriter modules
import hyrcan as hy
import xlsxwriter

Issue series of commands to create the initial slope geometry
hy.command("""
newmodel()
set('failureDir','r2l')
extboundary(0,0,130,0,130,50,80,50,50,30,0,30,0,0)
matboundary(0,20,130,35)
matboundary(56,34,130,42)
definemat('ground','matID',1,'matName','Sand','uw',18,'cohesion',5,'friction',38)
definemat('ground','matID',2,'matName','Clay','uw',17,'cohesion',57,'friction',0)
assignsoilmat('matid',2,'atpoint',85,30)
definelimits('limit',20,65,'limit2',80,100)
set('Method','BishopSim','on')
""")

Initialize the fos and cohesion arrays
fos_array = [-1,-1,-1,-1]
coh_array = [60,70,80,90]
Initialize the command text with the placeholder using curly brackets {}
cmd = "definemat('ground','matID',2,'matName','Clay','uw',17,'cohesion',{coh},'friction',0)"
Loop through the cohesion values and perform the computation and store the fos value
for i in range(0, 4):
 hy.command(cmd.format(coh=coh_array[i]))
 hy.command("compute('silence')")
 fos_array[i] = hy.min_fos('BishopSim')

Create a new XlsxWriter Workbook object
workbook = xlsxwriter.Workbook('coh_vs_fos_plot.xlsx')
Add a new worksheet to a workbook
worksheet = workbook.add_worksheet()
Create a new Format object to formats cells in worksheets
bold = workbook.add_format({'bold': 1})
Add the worksheet data that the charts will refer to.
headings = ['Cohesion (kN/m2)', 'FOS']
Write a row of data
worksheet.write_row('A1', headings, bold)
Write a column of data
worksheet.write_column('A2', coh_array)
worksheet.write_column('B2', fos_array)
Create a scatter chart sub-type with straight lines and markers.
chart = workbook.add_chart({'type': 'scatter',
 'subtype': 'straight_with_markers'})
Configure the first series.
chart.add_series({
 'name': '=Sheet1!B1',
 'categories': '=Sheet1!A2:A7',
 'values': '=Sheet1!B2:B7',
})
Add a chart title and some axis labels.
chart.set_title({'name': 'Results of analysis'})
chart.set_x_axis({'name': 'Cohesion (kN/m2)', 'min': 50, 'max': 100})
chart.set_y_axis({'name': 'Factor of Safety'})
Set an Excel chart style.
chart.set_style(11)
Insert the chart into the worksheet (with an offset).
worksheet.insert_chart('D2', chart, {'x_offset': 25, 'y_offset': 10, 'x_scale': 1.5, 'y_scale':
1.5})
Close the Workbook object and write the XLSX file
workbook.close()

