

SHANSEP Yöntemi Kullanılarak Kil Tabakası Üzerinde Bulunan Dolgunun Stabilite Analizi

Hazırlayan: <u>Roozbeh Geraili Mikola, PhD, PE</u> Çevirmen: <u>Umut Dağar</u> E-posta: <u>hyrcan4geo@outlook.com</u> Web Sayfası: <u>www.geowizard.org</u>

Bu eğitim kılavuzunda, **HYRCAN** aracılığıyla modellenmiş, sağlam kil tabakası üzerindeki bir dolgunun şev stabilite analizi ele alınmaktadır. Kil tabakası, SHANSEP (Stress History and Normalized Soil Engineering Properties) modeli ile modellenmiştir. Dolgu tabakası ise Mohr-Coulomb Zemin Modeli ile modellenmiştir.

Proje Ayarları

Proje Ayarları penceresinde, Göçme Yönü, Ölçü Birimleri, Analiz Yöntemleri ve Yeraltı suyu özelliği dahil olmak üzere çeşitli önemli modelleme ve analiz seçenekleri ayarlanabilmektedir. Bu analiz için, göçme yönünün "Sağdan Sola" olarak ayarlandığından emin olun ve ardından **Uygula**'ya basınız. **Yöntemler** sekmesinden, analiz için kullanılacak limit denge analiz yöntemini de seçebilirsiniz.

Seçim: Analiz →

Proje Ayarları

	-			
çü Birim	leri		Göçme Yönü	
rim:	Metrik	~	Sağdan Sola	←
			🔿 Soldan Sağa	
evcut D	d			
l:	Türkçe	~		

Şekil 1- Proje Ayarları Penceresi.

Geometri Oluşturma

• Dış Sınırlar

Her model için tanımlanması gereken ilk sınır Dış Sınırdır. Dış Sınır eklemek için, araç çubuğundan veya Sınırlar menüsünden Dış Sınır'ı seçiniz.

Seçim: Geometri

Ana pencerenin sağ alt tarafındaki komut satırına aşağıdaki koordinatları giriniz.

Nokta giriniz [esc=iptal]: 25.0,10.0
Nokta giriniz [esc=iptal]: 95.0,10.0
Nokta giriniz [esc=iptal]: 95.0,40.0
Nokta giriniz [c=kapat,esc=iptal]: 70.0,40.0
Nokta giriniz [c=kapat,esc=iptal]: 50.0,30.0
Nokta giriniz [c=kapat,esc=iptal]: 25.0,30.0
Nokta giriniz [c=kapat,esc=iptal]: c

 \rightarrow

Son nokta girildikten sonra **c** komutunun girilmesiyle beraber, ilk ve son noktaların otomatik olarak bağladığını (sınırı kapatır) ve Dış Sınır seçeneğinden çıktığını unutmayın. Ekranınız şimdi aşağıdaki gibi görünmelidir:

Şekil 2 – Dış Sınırın Oluşturulması.

• Malzeme Sınırları

Dış Sınır içindeki farklı malzeme bölgeleri arasındaki sınırları tanımlamak için **HYRCAN**'da malzeme sınırları kullanılır. İki adet malzeme sınırı tanımlayalım.

Seçim: Geometri

Ana pencerenin sağ alt tarafındaki komut satırına aşağıdaki koordinatları giriniz.

Nokta giriniz [esc=iptal]: 50.0,30.0
Nokta giriniz [d=bitti,esc=iptal]: 95.0,30.0
Nokta giriniz [d=bitti,esc=iptal]: d

Ekranınız şimdi aşağıdaki gibi görünmelidir:

 \rightarrow

Şekil 3- Dış Sınırların ve Malzeme Sınırlarının Eklenmesi.

• Yeraltı Su Seviyesi

Yeraltı su seviyesi ekleyin:

Seçim: Geometri →

Ana pencerenin sağ alt tarafındaki komut satırına aşağıdaki koordinatları giriniz.

Nokta giriniz [esc=iptal]: 50.0,30.0 Nokta giriniz [d=bitti,esc=iptal]: 95.0,30.0 Nokta giriniz [d=bitti,esc=iptal]: d

Ekranınız şimdi aşağıdaki gibi görünmelidir:

Şekil 4- Yeraltı Su Seviyesinin Eklenmesi.

Özellikler

Dolgu, serbest drenajlı bir malzeme (örneğin; kum) olarak kabul edilir. Kil tabakasının drenajsız kayma dayanımı SHANSEP malzeme modeli ile temsil edilecektir. Araştırmalar, normal konsolide killi zeminlerin drenajsız kayma dayanımının, $S_u/\sigma'_v = sabit \ değer$. olarak tanımlanan sabit bir mukavemet oranı ile temsil edilebileceğini göstermiştir. Drenajsız kayma dayanımı, düşey efektif örtü yükü gerilmesine göre normalleştirilir. Belirli bir gerilme izine maruz kalan bir zemin için, aşağıdaki denklem drenajsız kayma dayanımını tanımlar.

 $\tau = A + \sigma'_{v} S (OCR)^{m}$

 τ = drenajsız kayma dayanımı A = minimum drenajsız kayma dayanımı σ'_v = arazideki düşey efektif gerilme $S = \left(\frac{\tau}{\sigma'_v}\right)_{nc}$ normal konsolidasyon oranı OCR = Aşırı konsolidasyon oranı m = 0.75 ve 1 arasında bir değer.

Malzeme özelliklerimizi tanımlama zamanı. Araç çubuğundan veya Özellikler menüsünden **Malzemeleri Tanımla**'yı seçiniz.

Seçim: Özellikler →

Malzemeleri Tanımla

Malzemeleri Tanımla penceresine aşağıdaki özellikleri giriniz:

Malzeme	Zemin Modeli	γ (kN/m³)	<i>c</i> (kN/m²)	φ (derece)	Α	S	т	OCR
Dolgu	Mohr-Coulomb	20	5.0	30.0	-	-	-	-
Kil	SHANSEP	19	-	-	0	0.3	0.8	2

Dolau	^	Kil Tabaka	SI		
Kil Tabakası					
Material 3		Ad:	Kil Tabakası		
Material 4					
Material 5		Birim Hacim Ağırlık	(kN/m3): 19	Doygun Birim Hacim Ağırlı	k 20
Material 6					(OCP)m
Material 7		Dayanım Tipi	SHANSEP	$\vee t - A + \delta_y S$	
Material 8		Mukavemet Para	ametreleri		
Material 9				_	
Material 10		A :	0	S :	0.3
Material 11		m :	0.8	OCR :	2
Material 12					
Material 13					
Material 14					
Material 15		Su Parametreler	i		
Material 16					
Material 17		su seviyesi:	nıçdırı	 Ru Degeri: 	1
Material 18					

Tüm parametreleri girdikten sonra Uygula'ya basın.

Özelliklerin Atanması

Birden fazla malzeme tanımladığımız için, **Özellikleri Atama** seçeneğini kullanarak modelin doğru bölgelerine özellikler atamak gerekecektir. Araç çubuğundan veya Özellikler menüsünden **Özellikler Atama** seçeneğini seçin.

Seçim:	Özellikler	\rightarrow

Aşağıda gösterilen Malzeme Atama penceresini göreceksiniz.

🗖 Dolgu	^
📕 Kil Tabakası	
Material 3	
Material 4	
Material 5	
Material 6	
Material 7	
Material 8	
Material 9	
Material 10	
Material 11	
Material 12	
Material 13	
Material 14	
Material 15	
Material 16	
Material 17	
Material 18	~

Zemin tabakalarına özellikleri atamak için:

- "Malzeme Atama" penceresindeki zemin malzemesini seçmek için fareyi kullanınız. (malzeme adlarının "Malzeme Özelliklerini Tanımla" penceresinde girdiğiniz adlarla aynı olup olmadığına dikkat ediniz).
- 2. Şimdi imleci zemin bölgesinde herhangi bir yere getirin ve farenin sol düğmesine tıklayın. Tüm malzemeler atanana kadar diğer zemin malzemeleri için aynı işlemleri tekrarlayınız.

Şekil 5- Özellikler Atandıktan Sonra Model Geometrisi.

Şev Sınırlarının Değiştirilmesi

Şev Sınırları, Dış Sınır oluşturulur oluşturulmaz **HYRCAN** tarafından otomatik olarak hesaplanır. Şev sınırlarını modelin daha belirli alanlarına çekmek isterseniz, "**Şev Sınırlarını Tanımla**" penceresi ile özelleştirilebilir.

Seçim: Yüzeyler →

Şev Sınırlarını Tanım	a	\times
Sınırlar Sol x koordinatı Sağ x koordinatı	25 50	
☑ İkinci sınır seti Sınırlar		
Sol x koordinatı Sağ x koordinatı	70 95	
	Uygula	İptal

Bu eğitim kılavuzunda, sol ve sağ koordinatlar 25 ve 50 olarak ayarlanmıştır ve ikinci sınır setinin sol ve sağ koordinatları 70 ve 95 olarak ayarlanmıştır. Böylece, şev sınırlarını iyileştirerek, global minimum kayma yüzeyini daha doğru tahmin edebileceksiniz. Şimdi modeli oluşturmayı bitirdik ve analizi çalıştırmaya ve sonuçları yorumlamaya devam edebiliriz.

Hesapla

Model artık hesaplama aşamasına geçmek için hazır durumda.

Seçim: Analiz \rightarrow

Program, analizi çalıştırmaya devam edecektir. Tamamlandığında, sonuçları Sonuç Sekmesinde görüntüleyebilirsiniz.

Sonuçlar ve Tartışmalar

Hesaplama tamamlandığında, sonuçları Sonuç Sekmesinde görüntülemeye hazırsınız demektir. Varsayılan olarak, Sonuç Sekmesi açıldığında, ilk etkinleştirilen limit denge analiz yöntemi için Global Minimum kayma yüzeyi gösterilecektir. Güvenlik faktörü hesaplamalarının sonuçları Şekil 7'de gösterilmektedir. Tablo 1, farklı bir ticari program olan Slide2 kullanılarak aynı model için hesaplanan güvenlik faktörlerinin karşılaştırmalarını özetlemektedir.

Yöntem	Slide2	HYRCAN
Basitleştirilmiş Bishop	1.459	1.456
GLE/Morgenstern-Price	1.382	1.379
Basitleştirilmiş Janbu	1.330	1.330
Spencer	1.393	1.390

	4	Mine incertion	C the second life	Colstänloninging	1/	<u> _ </u>	. 4 1 .	
IADIO	· I –		GUVENIK	Fakionennin	Nars	รและ	SHEIII	masi
			Ouronnik			ę na ę	ç	110.01

Şekil 6- Otomatik Olarak Belirlenen Şev Sınırlarının Güvenlik Faktörü Sonuçları.

Analiz sonucu oluşturulan tüm geçerli kayma yüzeylerini görüntülemek için, araç çubuğundan veya Sonuç menüsünden "**Tüm Yüzeyler**" seçeneğini seçiniz.

Şekil 7- Dairesel yüzey gösterimi – Tüm yüzeylerin gösterilmesi.

"Dilimleri Göster" seçeneği, analizde kullanılan gerçek dilimleri görüntülemek için kullanılabilir.

Seçim: Sonuç

 \rightarrow

Dilimleri Göster

File View Geometry Loading Support Surfa	ces P	operties Analysis Result Help						
	র 🗃	1 M & V X & - P - A - A - A - A	- 20 X # 10 10 10 10	1 % = * 0 0 0 0				
Behop Septhed								
E Model U Result								
HYRCAN 1.90 ©2021 Roozbeh Geraili Mikola		Slice Data		×				
Factor of Safety Info		Sine 13						
Method Bishon Simplified			-					
Min. FOS: 1.45596	27	Dat	i Type Value	1				
Center: 51.3791,51.4207		Side Number	12					
Radius: 22.7387		Pactor or Sarety	140390					
Left Surface Endpoint: 43.75,30 Disht Surface Vield site (1.0412.60		Base Priction Ang	- (Jegy) U					
Ragni Surface Endposit 71.0417,40		Dese Conesion (ii Olice Michile (m)	-e) 40.7339					
		Base Leasth (m)	1.10442					
		Analo of Sirce Re-	e (dee) 15 1492					
	8	Size Weight (http:	e (Jreg / 1), 140, m3) 03 5400					
		Price Pressure (AP	A \$10805					
		Base Share Force	12 6365					
		Base Normal Ford	• 0:10 85.1009					
		Effective Normal	tress (kPa) 70.4127					
		Left Side Normal	force (kN) 99,1064					
	8	Right Side Norma	Force (kN) 107.59					
		Left Side Shear Fo	rce (kN) 0					
	8-		R, Zoom Cancel					
L		41 50	52	* *	5	60	52 54	8
						Pick	the slice to query information from [esc	cancel]
Commentation								
Lammanu une MFC/LVV> ausgrachtet("net/f.2,"alponit",56,30) HFC/LVV> HFC/LVV HFC/LVV HFC/LVV> HFC/LVV HFC/LVV HFC/LVV HFC/LVV HFC/LVV HF	M-P", "en	74ebod", Saebulin", fort, 74ebod", Spercer", fort)						8 ×
command								

Şekil 8- Dilimlerin Gösterilmesi.

HYRCAN, "Dilimleri Göster" seçeneği göçme yüzeyi üzerinde belirlenmiş olan tüm dilimleri görmenizi sağlar. "Dilim Verilerini Sorgula" seçeneği ise tüm dilimler için ayrıntılı analiz sonuçlarını görüntülemenizi sağlamaktadır. "Dilim Verilerini Sorgula" seçeneğini seçtikten sonra, Dilim Verileri penceresi görünecek ve size "Dilim verilerini görüntülemek için bir dilime tıklayın" komutunu verecektir. Herhangi bir dilime tıklayınız. Dilim için veriler yukarıda gösterildiği gibi veri penceresinde görüntülenecektir.

Komut Dizisi

Modeli bitirdikten sonra, oluşturulan komut dizisini **HYRCAN** aracılığıyla metin dosyasına kaydedebileceksiniz.

Seçim:

Bu eğitim kılavuzunda kullanılan komutlar aşağıda listelenmiştir.

```
newmodel()
set("failureDir","r2l")
set("unit","metric","waterUW",9.81)
extboundary(25,10,95,10,95,40,70,40,50,30,25,30,25,10)
matboundary(50,30,95,30)
addwatertable(25,30,95,30)
definemat("ground","matID",1,"matName","Embankment","cohesion",5)
definemat("ground","matID",2,"strengthType","SHANSEP","matName","Clay
Foundation","uw",19,"shansep_s",0.3,"shansep_ocr",2)
assignsoilmat("matid",2,"atpoint",50,20)
definelimits("limit",25,50,"limit2",70,95)
set("Method","BishopSim","on","Method","GLE/M-
P","on","Method","JanbuSim","on","Method","Spencer","on")
compute()
```